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In the applied sciences one often faces the task of determining a numerical 
value for the limit of a slowly convergent sequence. In many situations the 
sequence is divergent, yet there is a commanding physical reason to attach a 
meaning-in the sense of limit-to the sequence. Techniques for summing 
slowly convergent, or divergent, sequences go by the generic name of summation 
methods. The idea is to transform the given sequence Sn into a sequence Sn 
by some kind of formula, Sn = Fn{So, Si ..., Sk(n}, n = 0, 1, 2,..., so 

that Sn converges to the same limit, but more rapidly. 
In such an undertaking the numerical analyst has to address several issues, 

partly philosophical in nature: 
1) For a given sequence or class of sequences, which is the best technique to 

use? 
2) What assurance does one have that the approximate limit will be close- 

arbitrarily close-to the true limit? 
3) If the sequence is divergent, how can one know that the so-called limit 

calculated will reflect what the physical situation dictates? 
We can easily dispose of the last dilemma. There can be no general assurance 

that the limit calculated is the "correct" one. In his book [3] on infinite series, 
Knopp gives an example to illustrate that several heuristically plausible "limits" 
can be assigned to a divergent sequence. Although textbook examples may be so 
concocted, reality seems gentler to the numerical analyst: it is a rule of thumb 
that in real-life situations one either gets no limit at all or the correct limit. 

At a conference in January 1992 in Tenerife, E. J. Weniger presented some 
remarkable examples. The sequences in question were the partial sums, strongly 
divergent, of perturbation expansions for the ground state energies of the quar- 
tic, sextic, and octic anharmonic oscillators. The sequences posed challenging 
test problems for available summation methods, since their terms diverged, re- 
spectively, like n!/n 1/2, (2n)!/n 1/2, (3n)!/n 1/2. A favorite method-the Levin 
transformation-could not sum any of these sequences, and the failure was not 
an artifact of numerical instability or round-off error-a common pitfall of sum- 
mation methods. Weniger performed the computations in Maple in 1000-digit 
precision; the failure of the Levin method was genuine. Another transformation 
did sum the sequences. It is interesting that in all the cases Weniger studied, 
the summation methods chosen either did not produce a convergent sequence 
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or summed the sequence to its physically correct limit. Never did the methods 
deliver up a spuriously convergent sequence. 

We can address the first and second issues in a more illuminating and pro- 
ductive way, and the present book presents an exhaustive survey of our current 
state of knowledge. One difficulty with working in this field is that crucial results 
are scattered throughout a voluminous technical literature, in technical reports, 
conference proceedings, published journals. Some remarkable theoretical and 
practical tools have emerged in the last decade. This book provides an account 
of them all. The senior author, Claude Brezinski, is a-perhaps the-leading 
authority on the subject, and the presentation reflects his expertise, experience, 
and organizational skills. One hat he wears is that of a mathematical histo- 
rian, and the book is informed with a strong and compelling sense of the cul- 
tural primacy of numerical analysis, a subject that has fascinated the greatest 
mathematicians. This volume is a momentous contribution to the literature on 
computational mathematics. 

Among very recent theoretical results are theorems describing those classes of 
convergent sequences that are accelerable, i.e., for which there is a summation 
method that will transform each sequence in the class into a more rapidly con- 
vergent sequence with the same limit. I asked in my book [6] on the subject- 
written in 1981 and, alas, quite out of date now-whether there was a universal 
method that would accelerate the convergence of all complex convergent se- 
quences. The French school-consisting mostly of Claude and his present and 
past students-took a penetrating look at this question. The result was probably 
the most remarkable mathematics ever done in this area. The book quotes a 
beautiful theorem due to Jean Paul Delahaye (1988). First, a little notation. 
Let E be a metric space. For M c E denote by M* the set of accumulation 
points of M. Let S(E) be the class of convergent sequences in E with the 
property that for every sequence {S4} c S(E) and every no, Sn $6 limnO+ Sn 
for some n > no. 

Theorem. A necessary and sufficient condition for S(E) to be accelerable is that 
(E*)* = 0. 

This means, essentially, that if the class of its convergent sequences is to be 
accelerable, the metric space must be small, very small. The combined ranges 
of the sequences cannot even contain a perfect subset. The theorem is gen- 
eral. The older, classical summation methods are linear and generally offer 
only limited improvement in convergence. In the past 50 years or so, many 
highly effective nonlinear methods have appeared. The form of the method is 
irrelevant, however: the theorem makes no assumptions about the linearity of 
the sequence transformation used for the acceleration. 

Researchers have discovered other striking facts. The union of two accel- 
erable classes may be nonaccelerable. Also, it was a disappointment to those 
working in the area to find that the class of real monotone sequences is not 
accelerable. However, the class of complex linearly convergent sequences, i.e., 
convergent sequences with the property 

lim Sn+1-S = 0< IA < 1, lim Sn =S, 
n,oo Sn - S noo 

is accelerable. 
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Current theoretical research has centered on defining more accurately the 
frontier between accelerability and nonaccelerabiltiy. What is the smallest non- 
accelerable subclass of convergent sequences? the largest accelerable subclass? 
The impossibility of finding a universal method has caused some authors to toy 
with the definitions of acceleration and transformation. Recent work in this 
area, due to researchers such as Wang, Jacobsen, and Germain-Bonne, has been 
fruitful. 

Despite these intriguing theoretical observations, the book really aims for 
the problem reader, one with no specialized knowledge of summation methods, 
but with many, many obstinate sequences to sum. I have heard that scientists 
working in neutron diffusion problems encounter sequences consisting of vectors 
with tens of thousands of components. The attempt to find a numerical value 
of the limits of such a sequence will surely make a pragmatist of anyone. 

The book starts out at square 1. Appropriately, the first section of the first 
chapter is entitled, First steps. To orient the reader, the authors at the outset 
quote two methods, one that of the arithmetic means (linear), and the other the 
Aitken A2 method (nonlinear): 

Sn + Sn+i n = O, 1, 25 ... 
. 

n 2 
SnSn+2-Sn2+n 

Sn = Sn+2- 2Sn+1 + Sn' n=01,2. 

These methods are old, and familiar to every numerical analyst, but they 
serve as paradigms for more modern approaches. The authors point out that 
the second process, rediscovered by Aitken, was known to the Japanese math- 
ematician Seki Kowa (1642?-1708), who used it to accelerate the computation 
of 7i by the method of inscribed polygons. 

Linear methods are the grandmothers of the subject: predictable, but tepid. 
Nonlinear methods are the bikers: robust, but erratic. Nonlinear methods are 
seldom regular, but they can sum vigorously divergent sequences. 

Attempts to generalize and extend the two methods above have given rise to 
the contemporary literature on the subject. For instance, how can one extend 
the Aitken A2 method to spaces where no inverses exist, for instance, topolog- 
ical vector spaces? Surprisingly, people have discovered such extensions. The 
methods, which employ the dual space, are ingenious. 

We get in this chapter the basic definitions of regularity of an extrapolation 
algorithm (what I have been calling a summation method): Sn must converge 
to the same limit as Sn for any convergent Sn, of accelativeness-a bad word; 
is there a better one?-, of translativity, homogeneity, quasilinearity of algo- 
rithms. The kernel of a method is that subclass of sequences mapped identi- 
cally into a constant sequence, the constant being the limit when the sequence 
is convergent. Constructing the kernel of an algorithm is obviously an impor- 
tant thing to do, since the kernel gives some sense of the types of sequences for 
which the algorithm will be effective. For the first process above, the kernel is 
the set of sequences of the form Sn = S + a (-1 )n . For the second it is the set 
of sequences of the form Sn = S + aAn . 

In this chapter the authors establish a few essential principles: (i) One can 
express many noteworthy sequence transformations, for instance, the Shanks 
transformation and the Wynn e-algorithm, based on it, as ratios of determi- 



REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 861 

nants involving members of the original sequence. (ii) The numerical stability 
of a method is often a consequence of how one formulates the method. (iii) 
A knowledge of the asymptotic properties of real sequences, properties some- 
times obscure and often new, is essential to an understanding of the success of 
extrapolation methods. 

The authors also discuss the most popular scalar extrapolation methods in 
Chapter 1. Many algorithms go by the name of the mathematician who discov- 
ered, more often than not, rediscovered, them: the Shanks transformation, the 
Levin transformation, the Germain-Bonne transformation, the Thiele extrapo- 
lation process; Let me discuss briefly the Shanks transformation. Anyone not 
familiar with the subject will find this algorithm, and the e-algorithm based on 
it, very mysterious. Assume that the original sequence Sn converges to its limit 
S in the following fashion: 

S, S + CAin An An2 + An3+ +Ci 

In the parlance of electrical engineering, one assumes the sequence is its limit 
plus a finite number of exponential transients. If one replaces the "-" by "=" 

above, one may solve for S by eliminating the exponentials. This produces an 
approximation to S, which in reality is a transformed sequence Sn: 

Sn ... Sn+k 
ASn ASn+k 

( 1 ) ek (Sf)=S= - / ASe+2kE1 . 

ASn ... ASn+k 

ASn+k-1 ... ASn+2k-1 

A sensible tactic is to fix k, the number of transients, then allow n to get 
large and hope that Sn will converge more rapidly than Sn. For instance, 
k = 1 gives the Aitken A2 method.' But what if the number of transients 
and n both get larger simultaneously? This speculation, a truly innovative 
one, caused a conceptual revolution in the subject. One generates a (n, k) 
table, in which one can travel downwards along an arbitrary path, hoping to 
select the path that will promote the most rapid convergence. But, of course, 
the determinants involved rapidly become unwieldy. Is there a better way of 
formulating the algorithm? There is, and it was discovered in 1956 by Peter 
Wynn [7].2 

Define the sequence e (n), k, n = 0, 1,2, ..., by the following algorithm, 
sometimes called a tableau, 

(2) g(n) - (n+1) + 1 
, k, n = 0, 1, 2, ... , k+1 1a c(n+1) - (n) = 

k k 

with initial conditions c1n -0, 9 -n =Sn n = 0, 1, 2. 

1More history: The case k = 2 of the algorithm was used by James Clerk Maxwell, 1892. 
Schmidt [4] discovered the general case in 1941, Shanks only later [5, p. 39], in 1949. 

2Any honest reader will admit to wishing that he or she had discovered this algorithm first. I 
do. 
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One can show that 

(3) E(n) = ek(Snf). 

How show? Alas, there seems to be no simple way. The proof Wynn gave 
depended on complicated determinant transformations known as Schweinsian 
identities.3 More annoying is that one has to know that one wants to derive (3) 
to prove it. This is the Catch-22 of the mathematical enterprise. If only God 
gave us the formulas and we returned the proofs. Or vice versa. I have heard 
that Wynn based his supposition of (3) on a misreading of (1). 

The e-algorithm is dreadfully nonlinear, and thus, one might suppose, resis- 
tant to analysis. Yet, we now know a lot about it. A necessary and sufficient 
condition that a sequence Sn lie in the kernel of the e-algorithm is that there 
exist ao, al, a2, . .., ak with ak $0 and ao+al+a2+ak $0 such that 

(4) ao(Sn-S) + al(Sn+l-S) + * * * + ak(Sn+k-S)= 0 

This beautiful result is due to Brezinski and Crouzeix (1970). 
The reviewer and his coworkers have generalized the algorithm to abstract 

sequence spaces, and we can now completely characterize its effect on many 
complex sequences, at least for certain paths in the tableau. We have, for in- 
stance, the following result: 

Let 
00 

Sn S + Zai(n + b)-', n- oo . 
i=l 

Then for k fixed and n - oo, 

2k (k + 1)(n +b 

The authors display this result and many other tidbits in their Theorem 2.19. 
The effect the e-algorithm has on certain sequences is dramatic. For instance, 

it will sum the partial sums of the wildly divergent series 
0.0 

:(-1 I)nn!, 
n=o 

in the sense that 
lim E(k) .5963473623 = S. 

k-+oo 
S is the "correct" value, i.e., 

00 e-t 
S= e dt. 

(Just expand (1 + t)1 in its Taylor series and formally integrate term-by-term.) 
Unfortunately, the algorithm is unstable-for instance, it must be expected 

that if the algorithm is to be effective, then when k is large, 6(n) and (n+1) 
will be close to each other during the computations. That is precisely what 
will produce a small denominator in the algorithm, and it tends to happen 
when Sn approaches its limit monotonically. Further, the algorithm is not 

3There is a proof utilizing the theory of S-fractions [1], but it is not for the faint of heart (nor 
the unwary; there are crippling errors in text). 
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very flexible: it cannot accommodate itself to the shape of the sequence under 
consideration. Despite its elegance and theoretical importance-in the theory 
of Pade approximants, for instance-it is not today a significant numerical tool. 

Numerical analysts often, but not universally, acknowledge that the two most 
effective algorithms are the Levin and the 0-algorithm, the latter due to Brezin- 
ski. Problem readers needing a quick fix should read the material in Chapter 
2, which introduces these algorithms and describes some of their properties. 
I caution the reader that the algorithm should depend on the application. If 
you want to accelerate the computation of definite integrals, think about the 
G-transformation. For monotone sequences, think about the Levin transforma- 
tion. There is no universal algorithm. Statistical sequences, or sequences whose 
error sequences have erratic signs, will defeat any method.4 

In applying any flexible extrapolation algorithm, it is very helpful to have an 
idea of the shape of the error sequence. The algorithm can then be tailored to 
that sequence. For many sequences, one can construct an asymptotic expansion 
of the error that will permit a more efficient use of an algorithm. Also, it may 
be possible to extract a subsequence from the given sequence and to accelerate 
the convergence of that subsequence rather than trying to tackle the original 
sequence. This is useful when the errors of the sequence have erratic behavior. 
The authors discuss these matters in Chapter 3. From their account of the large 
number of special devices one can employ, it is clear that the effective use of 
extrapolation algorithms is still much more of an art than a science. 

As mentioned previously, vector sequences arise often in physics and en- 
gineering, usually in the numerical solution of partial differential equations by 
finite differences or the method of finite elements, and in matrix eigenvalue com- 
putations. Of course, one can simply use an extrapolation algorithm on each 
component of the vector sequence. Such an approach is neither effective nor in- 
tellectually satisfying. The theory of vector extrapolation is more sophisticated 
and has a connection with projection methods, which play an esteemed role in 
numerical analysis. I want to say some words about the vector e-algorithm, 
since it has an intriguing theory and shows just how far ingenuity can take you 
in this business. If one attempts to apply the tableau (2) to vector sequences, 
the necessity of inverting vectors proves an impediment. Not to worry. Why 
not take as the inverse of a vector y the vector 

-1 Y__ 

(Y , Y) 

which gives the right thing when y is a scalar? The algorithm so defined is 
the vector e-algorithm. McLeod and Graves-Morris studied the kernel of the 
vector e-algorithm and discovered that the condition (4) is sufficient for a vec- 
tor sequence to belong to the kernel. The characterization of necessity is much 
deeper, and the authors devote some space to it. No one knows whether deter- 
minant expressions similar to (1)-(3) hold for the algorithm. Another strategy 
is to start with a determinant representation, then formulate a recursive algo- 
rithm. The result is called the topological e-algorithm. The problem is that 

4In my book I give some methods due to myself and Bob Higgins for accelerating the convergence 
of statistical sequences. But now I see these methods as mired in meta-mathematical dubieties. 
What does it mean to accelerate the convergence of a sequence which only converges almost surely? 
At one time I thought I knew. Now I'm not so certain. 
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the formula (1) makes sense only when one is working in a field. The way of 
getting around this is really clever. Let y be an arbitrary vector. Interpret the 
determinant (1) as 

Sn ... Sn+k 

(Y , A\SO . .. (Y, A /Sn+k ) 

ek (Sn) =-(Y, ASl+k-1) ..(Y,5ASfl+2k-1) ek(Sn = ~1 1 

(Y, ASO) ... (Y ASSn+k) 

(y , ASn+k-1) ... (Y ASSn+2k- 1) 

where (, ) is an inner product. Obviously, this formalism will work for any 
topological vector space S: just pick y to be an element of the dual of S. 

It can be shown that the algorithm whose rules are 

2k+l 2k-i 
l 

(y(n+1) - e(k)) k, n = 0, 1, ..., 
2k 2k! 

(n+1) (n) 
9(n) =..(n+l) + ~ 2k -2k , k, n=0, 1, ...,5 

2k+2 - 2k 1( (n+l) n (n+1) _(n)) 
2k+1 2k+1 2k 2k 

with initial conditions E(n) = 0, E(n) = Sn, n = 0, 1, 2, ... , has the property 

that 47(n) = ek(Sn). I mentioned previously the lack of flexibility of the e- 
algorithm. The same is true of the vector version, but there is a much more 
general algorithm, called the topological E-algorithm, that allows one to take 
advantage of information one may have about the shape of the sequence Sn . 

In Chapter 6, the authors discuss the application of the material in the pre- 
vious chapter to many problems in the applied sciences. It is here that this 
book is palpably stronger than any previous book. The applications are to sum- 
mation of sequences and series, summation of double sequences, Chebyshev 
and Fourier series, continued fractions, vector sequences, systems of equations, 
projection methods, regularization and penalty techniques, nonlinear equations, 
continuation methods, eigenvalue and eigenvector computations, derivatives of 
eigensystems, integral and differential equations, implicit Runge-Kutta meth- 
ods, boundary value problems, Laplace transform inversion, partial differential 
equations, interpolation and approximation, statistical procedures, in particular, 
Monte Carlo techniques, and numerical integration and differentiation. Many 
of the applications involve what are called mathematical ill-posed problems, that 
is, problems which are extremely sensitive to small perturbations in initial data. 

Some numerical analysts consider sequence extrapolation to be a mere cu- 
riosity, hardly deserving of the energy its zealot admirers pour into it. No book 
on numerical analysis has an up-to-date account of the subject. The formu- 
las (1), (2), (3) are among the most captivating in computational mathematics, 
and their theoretical and practical implications are considerable, yet how many 
numerical analysis books have an explanation of the e-algorithm? I have long 
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suspected that the agenda of those who write books on numerical analysis is 
not to enlarge our set of tools for solving difficult and important problems but 
merely to, well, write still more books on numerical analysis. 

This is an absurd state of affairs. It reflects a know-nothingness that is puz- 
zling in an age in which our personal health and welfare may depend on the 
resolution of ill-posed problems, such as inverse scattering problems (medical 
imaging) and problems in prediction theory (transportation of atmospheric pol- 
lutants). I do not believe that some new, magical method will appear to rescue 
us from the challenges these problems present. Our best hope for getting the 
information we need may be to use extrapolation methods, cleverly tailored 
to the context. Monte Carlo methods are the numerical court of last resort 
for many ill-posed problems, but the convergence of Monte Carlo methods, 
O(n-1/2), n being the sample size, is so woeful that the error can swamp the 
computations, or the computations may be too responsive to the vagaries of 
the random-number generating scheme. Our knowledge about accelerating the 
convergence of statistical sequences is in its infancy. The methods we have 
now are not good, and are tainted with philosophical paradox. I think we can 
develop effective techniques, though they probably will depend on our ability to 
accurately characterize the distribution of the class of sequences being studied. 
We need to do much more research. 

A unique feature of this book is a floppy disk containing subroutines for 
the practical implementation of extrapolation algorithms. In the last chapter, 
the authors describe the programs on the disk. They have tried to present 
the application side of the subject as more than just a mindless set of recipes. 
They emphasize that extrapolation methods must be programmed with great 
care, since often cancellation of significant digits is an inevitable concomitant 
to a method. Occasionally, one can use algebraic tricks to minimize numerical 
instability. Sometimes one cannot. By the way, I mentioned previously that 
nature is always kind to the numerical analyst: it never deceives by presenting 
the analyst with a spurious limit. The authors in this chapter give an example 
that forces me to qualify that statement. Consider the sequence Sn defined by 

Sn+1 = e-Sn , n = 0, 1, 2, ... , So = 1 . 

The sequence converges, to S = .567143.... We know the Aitken A2 method 
accelerates the convergence of this sequence, at least theoretically. Yet, if one 
retains only a fixed number of significant figures in the computation, say, 7, the 
A2 method gives the spurious limit of .5000000! 

The resources the authors provide the reader through this disk are really 
impressive: 25 methods are here, the most important methods in their scalar, 
vector, and topological manifestations. 

Who should buy this book? Well, not just applied mathematicians. Anyone 
who uses numerical computations in the analysis of mathematical models of 
physical phenomena should own a copy. I emphasize that this is not a theoretical 
book, which places it in a different category from books like Delahaye's [2] or my 
own [6], and in its practical attributes-its expanse and user-friendliness-it far 
surpasses previous books by the first author. The theoretical content energizes 
the book, but the book is more of a hands-on manual in the craft of obtaining 
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numerical data in onerous circumstances. There is nothing else available that 
does the job so well. 

JET WIMP 

Department of Mathematics and Computer Science 
Drexel University 
Philadelphia, PA 19104 
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Although it is well over 2,000 years ago that Archimedes (287-212 B.C.) 
started the subject of numerical integration by finding approximations to 7 , the 
interest in the subject appears to be far from waning, and this NATO Advanced 
Research Workshop on Numerical Integration, held in Bergen, Norway over 
five days in June 1991, attracted 38 delegates from around the world. In all, 34 
papers were presented, twenty five appear in full in this volume together with 
three extended abstracts and one note. The aim of the workshop was to survey 
recent progress and show how theoretical results have been used in software 
development and practical applications. This aim has been well achieved. The 
papers have been subdivided into four sections: "Numerical Integration Rules", 
"Numerical Integration Error Analysis", "Numerical Integration Applications", 
and finally "Numerical Integration Algorithms and Software". A complete list 
of authors and papers is given at the end of this review. 

To the reviewer's delight, he found that this volume is dedicated to James 
Lyness "on the occasion of his 60th birthday". James has been contributing to 
the subject of numerical integration since his first paper, with John Blatt and 
David Mustard, was published nearly 30 years ago in the Computer Journal [3]. 
This Conference did not find James lacking and he describes, in good anecdotal 
style, his experience involving quadrature over a triangle or quadrilateral when 
the integrand has a known singularity at a vertex. Under an affine transforma- 
tion of the region one can get disastrous results. James describes his experiences 
with this problem. 

It is neither possible nor desirable for me to attempt to review, however 
briefly, every paper, so I shall make a highly personalized selection of papers 
for brief comment. Let me start with the papers by those authors who were 
also writing on numerical integration when James Lyness published his first 


